VIVE LA RÉVOLUTION
Accueil du site > Comment publier un article > La protéine magneto permet de manipuler le cerveau à distance

La protéine magneto permet de manipuler le cerveau à distance

dimanche 20 juin 2021, par anonyme (Date de rédaction antérieure : 20 juin 2021).

La magnétogénétique permet de manipuler le cerveau à distance

https://www.lefigaro.fr/sciences/20…

Publié le 04/04/2016 à 19:20
Mis à jour le 04/04/2016 à 21:44

Pierre Kaldy

Le comportement de souris génétiquement modifiées a été changé par un champ magnétique. Une révolution à venir dans les neurosciences.

Stimuler à distance un comportement est devenu réalité grâce à une nouvelle technique, développée par des scientifiques américains de l’université de Virginie et détaillée dans la revue Nature Neuroscience. Les chercheurs ont mis au point une protéine, baptisée Magneto et capable d’activer les cellules nerveuses en présence d’un champ magnétique, puis l’ont introduite dans des neurones précis du circuit de la récompense chez des souris. Celles-ci ont alors montré une préférence marquée pour l’endroit où régnait un champ magnétique élevé. Les chercheurs ont ainsi fait la double démonstration du rôle joué par ces neurones et de la possibilité de les activer directement, instantanément et à distance par l’application d’un champ magnétique continu.

Au centième de millimètre

Dans ce type d’expérience, agir sur le cerveau ne prend plus des secondes, comme avec l’injection d’un produit dans le sang, mais des millisecondes. Et surtout, les cellules ne sont plus ciblées au millimètre près, comme avec des électrodes fichées

Le reste est payant.

https://www.futura-sciences.com/san…

The Guardian, 2016 : Une protéine « Magneto » génétiquement modifiée contrôle à distance le cerveau et le comportement

https://www.anguillesousroche.com/t…

2 juin 2021

Source : The Guardian – Traduit par Anguille sous roche

Une nouvelle méthode « audacieuse » utilise une protéine magnétisée pour activer les cellules du cerveau de manière rapide, réversible et non invasive.

Des chercheurs américains ont mis au point une nouvelle méthode pour contrôler les circuits cérébraux associés aux comportements complexes des animaux, en utilisant le génie génétique pour créer une protéine magnétisée qui active à distance des groupes spécifiques de cellules nerveuses.

Comprendre comment le cerveau génère le comportement est l’un des objectifs ultimes des neurosciences – et l’une de leurs questions les plus difficiles. Ces dernières années, les chercheurs ont mis au point un certain nombre de méthodes qui leur permettent de contrôler à distance des groupes spécifiques de neurones et de sonder le fonctionnement des circuits neuronaux.

La plus puissante de ces méthodes est l’optogénétique, qui permet aux chercheurs d’activer ou de désactiver des populations de neurones apparentés, à l’échelle de la milliseconde, à l’aide d’impulsions de lumière laser. Une autre méthode récemment mise au point, appelée chimiogénétique, utilise des protéines modifiées qui sont activées par des médicaments de synthèse et peuvent être ciblées sur des types de cellules spécifiques.

Bien que puissantes, ces deux méthodes présentent des inconvénients. L’optogénétique est invasive, car elle nécessite l’insertion de fibres optiques qui délivrent les impulsions lumineuses dans le cerveau. De plus, la pénétration de la lumière dans le tissu cérébral dense est fortement limitée. Les approches chimiogénétiques permettent de surmonter ces deux limitations, mais elles induisent généralement des réactions biochimiques qui prennent plusieurs secondes pour activer les cellules nerveuses.

La nouvelle technique, mise au point dans le laboratoire d’Ali Güler à l’université de Virginie à Charlottesville, et décrite dans une publication avancée en ligne dans la revue Nature Neuroscience, est non seulement non invasive, mais peut également activer les neurones rapidement et de manière réversible.

Plusieurs études antérieures ont montré que les protéines des cellules nerveuses qui sont activées par la chaleur et la pression mécanique peuvent être génétiquement modifiées pour devenir sensibles aux ondes radio et aux champs magnétiques, en les attachant à une protéine stockant le fer appelée ferritine, ou à des particules paramagnétiques inorganiques. Ces méthodes représentent une avancée importante – elles ont, par exemple, déjà été utilisées pour réguler le taux de glucose dans le sang des souris – mais elles impliquent de multiples composants qui doivent être introduits séparément.

La nouvelle technique s’appuie sur ces travaux antérieurs et se base sur une protéine appelée TRPV4, qui est sensible à la fois à la température et aux forces d’étirement. Ces stimuli ouvrent son pore central, permettant au courant électrique de circuler à travers la membrane cellulaire ; cela provoque des impulsions nerveuses qui se propagent dans la moelle épinière, puis dans le cerveau.

Güler et ses collègues ont pensé que les forces de couple magnétique (ou de rotation) pouvaient activer TRPV4 en ouvrant son pore central. Ils ont donc utilisé le génie génétique pour fusionner la protéine avec la région paramagnétique de la ferritine, ainsi que de courtes séquences d’ADN qui signalent aux cellules qu’elles doivent transporter les protéines vers la membrane des cellules nerveuses et les y insérer.

https://youtu.be/iHTpJNSNFlc

In vivo manipulation of zebrafish behavior using Magneto2.0

Mo Costandi - 24 mars 2016

Cliquer ici pour télécharger a vidéo

Lorsqu’ils ont introduit cette construction génétique dans des cellules rénales embryonnaires humaines poussant dans des boîtes de Pétri, les cellules ont synthétisé la protéine « Magneto » et l’ont insérée dans leur membrane. L’application d’un champ magnétique a activé la protéine TRPV1 modifiée, comme en témoigne l’augmentation transitoire de la concentration d’ions calcium dans les cellules, détectée au microscope à fluorescence.

Ensuite, les chercheurs ont inséré la séquence d’ADN Magneto dans le génome d’un virus, avec le gène codant pour la protéine fluorescente verte et des séquences d’ADN régulatrices qui font que la construction n’est exprimée que dans des types spécifiques de neurones. Ils ont ensuite injecté le virus dans le cerveau de souris, en ciblant le cortex entorhinal, et ont disséqué le cerveau des animaux pour identifier les cellules qui émettent une fluorescence verte. À l’aide de microélectrodes, ils ont ensuite montré que l’application d’un champ magnétique sur les tranches de cerveau activait Magneto afin que les cellules produisent des impulsions nerveuses.

Afin de déterminer si Magneto peut être utilisée pour manipuler l’activité neuronale chez des animaux vivants, ils ont injecté Magneto dans des larves de poisson zèbre, en ciblant les neurones du tronc et de la queue qui contrôlent normalement une réaction de fuite. Ils ont ensuite placé les larves de poisson-zèbre dans un aquarium magnétisé spécialement conçu à cet effet et ont constaté que l’exposition à un champ magnétique induisait des mouvements d’enroulement similaires à ceux qui se produisent lors de la réaction de fuite. (Cette expérience a porté sur un total de neuf larves de poisson zèbre, et des analyses ultérieures ont révélé que chaque larve contenait environ 5 neurones exprimant Magneto).

Lors d’une dernière expérience, les chercheurs ont injecté Magneto dans le striatum de souris au comportement libre, une structure cérébrale profonde contenant des neurones producteurs de dopamine qui interviennent dans la récompense et la motivation, puis ont placé les animaux dans un appareil divisé en sections magnétisées et non magnétisées. Les souris exprimant Magneto ont passé beaucoup plus de temps dans les zones magnétisées que les autres, car l’activation de la protéine a provoqué la libération de dopamine par les neurones striataux qui l’expriment, de sorte que les souris ont trouvé gratifiant de se trouver dans ces zones. Cela montre que Magneto peut contrôler à distance l’allumage des neurones dans les profondeurs du cerveau, ainsi que des comportements complexes.

Le neuroscientifique Steve Ramirez, de l’université Harvard, qui utilise l’optogénétique pour manipuler les souvenirs dans le cerveau des souris, a déclaré que cette étude était « géniale »

« Les précédentes tentatives [d’utilisation d’aimants pour contrôler l’activité neuronale] nécessitaient de multiples composants pour que le système fonctionne – injection de particules magnétiques, injection d’un virus exprimant un canal thermosensible, [ou] fixation de la tête de l’animal pour qu’une bobine puisse induire des changements dans le magnétisme », explique-t-il. « Le problème d’avoir un système à plusieurs composants est qu’il y a tellement de possibilités pour que chaque pièce individuelle se décompose.

« Ce système est un virus unique et élégant qui peut être injecté n’importe où dans le cerveau, ce qui rend techniquement plus facile et moins probable que les cloches et les sifflets mobiles tombent en panne », ajoute-t-il, « et leur équipement comportemental a été intelligemment conçu pour contenir des aimants aux endroits appropriés afin que les animaux puissent se déplacer librement ».

La « magnétogénétique » est donc un ajout important à la boîte à outils des neuroscientifiques, qui sera sans aucun doute développé plus avant et fournira aux chercheurs de nouveaux moyens d’étudier le développement et le fonctionnement du cerveau.

Référence

Wheeler, M. A., et al. (2016). Contrôle magnétique génétiquement ciblé du système nerveux. Nat. Neurosci, DOI : 10.1038/nn.4265 [Abstract]

Genetically engineered ’Magneto’ protein remotely controls brain and behaviour

https://www.theguardian.com/science…

Thu 24 Mar 2016 14.30 GMT
Last modified on Tue 9 May 2017 18.32 BST

Mo Costandi

The toroidal magnetic chamber (Tokamak) of the Joint European Torus (JET) at the Culham Science Centre. Photograph : AFP/Getty Images

“Badass” new method uses a magnetised protein to activate brain cells rapidly, reversibly, and non-invasively

Researchers in the United States have developed a new method for controlling the brain circuits associated with complex animal behaviours, using genetic engineering to create a magnetised protein that activates specific groups of nerve cells from a distance.

Understanding how the brain generates behaviour is one of the ultimate goals of neuroscience – and one of its most difficult questions. In recent years, researchers have developed a number of methods that enable them to remotely control specified groups of neurons and to probe the workings of neuronal circuits.

The most powerful of these is a method called optogenetics, which enables researchers to switch populations of related neurons on or off on a millisecond-by-millisecond timescale with pulses of laser light. Another recently developed method, called chemogenetics, uses engineered proteins that are activated by designer drugs and can be targeted to specific cell types.

Although powerful, both of these methods have drawbacks. Optogenetics is invasive, requiring insertion of optical fibres that deliver the light pulses into the brain and, furthermore, the extent to which the light penetrates the dense brain tissue is severely limited. Chemogenetic approaches overcome both of these limitations, but typically induce biochemical reactions that take several seconds to activate nerve cells.

The new technique, developed in Ali Güler’s lab at the University of Virginia in Charlottesville, and described in an advance online publication in the journal Nature Neuroscience, is not only non-invasive, but can also activate neurons rapidly and reversibly.

Several earlier studies have shown that nerve cell proteins which are activated by heat and mechanical pressure can be genetically engineered so that they become sensitive to radio waves and magnetic fields, by attaching them to an iron-storing protein called ferritin, or to inorganic paramagnetic particles. These methods represent an important advance – they have, for example, already been used to regulate blood glucose levels in mice – but involve multiple components which have to be introduced separately.

The new technique builds on this earlier work, and is based on a protein called TRPV4, which is sensitive to both temperature and stretching forces. These stimuli open its central pore, allowing electrical current to flow through the cell membrane ; this evokes nervous impulses that travel into the spinal cord and then up to the brain. Advertisement

Güler and his colleagues reasoned that magnetic torque (or rotating) forces might activate TRPV4 by tugging open its central pore, and so they used genetic engineering to fuse the protein to the paramagnetic region of ferritin, together with short DNA sequences that signal cells to transport proteins to the nerve cell membrane and insert them into it.

https://youtu.be/iHTpJNSNFlc

In vivo manipulation of zebrafish behavior using Magneto2.0

Mo Costandi - 24 mars 2016

Cliquer ici pour télécharger a vidéo

From Wheeler, et al. (2016). Genetically targeted magnetic control of the nervous system. Nat. Neurosci.

When they introduced this genetic construct into human embryonic kidney cells growing in Petri dishes, the cells synthesized the ‘Magneto’ protein and inserted it into their membrane. Application of a magnetic field activated the engineered TRPV1 protein, as evidenced by transient increases in calcium ion concentration within the cells, which were detected with a fluorescence microscope.

Next, the researchers inserted the Magneto DNA sequence into the genome of a virus, together with the gene encoding green fluorescent protein, and regulatory DNA sequences that cause the construct to be expressed only in specified types of neurons. They then injected the virus into the brains of mice, targeting the entorhinal cortex, and dissected the animals’ brains to identify the cells that emitted green fluorescence. Using microelectrodes, they then showed that applying a magnetic field to the brain slices activated Magneto so that the cells produce nervous impulses.

To determine whether Magneto can be used to manipulate neuronal activity in live animals, they injected Magneto into zebrafish larvae, targeting neurons in the trunk and tail that normally control an escape response. They then placed the zebrafish larvae into a specially-built magnetised aquarium, and found that exposure to a magnetic field induced coiling manouvres similar to those that occur during the escape response. (This experiment involved a total of nine zebrafish larvae, and subsequent analyses revealed that each larva contained about 5 neurons expressing Magneto.)

In one final experiment, the researchers injected Magneto into the striatum of freely behaving mice, a deep brain structure containing dopamine-producing neurons that are involved in reward and motivation, and then placed the animals into an apparatus split into magnetised a non-magnetised sections. Mice expressing Magneto spent far more time in the magnetised areas than mice that did not, because activation of the protein caused the striatal neurons expressing it to release dopamine, so that the mice found being in those areas rewarding. This shows that Magneto can remotely control the firing of neurons deep within the brain, and also control complex behaviours.

Neuroscientist Steve Ramirez of Harvard University, who uses optogenetics to manipulate memories in the brains of mice, says the study is “badass”.

“Previous attempts [using magnets to control neuronal activity] needed multiple components for the system to work – injecting magnetic particles, injecting a virus that expresses a heat-sensitive channel, (or) head-fixing the animal so that a coil could induce changes in magnetism,” he explains. “The problem with having a multi-component system is that there’s so much room for each individual piece to break down.”

“This system is a single, elegant virus that can be injected anywhere in the brain, which makes it technically easier and less likely for moving bells and whistles to break down,” he adds, “and their behavioral equipment was cleverly designed to contain magnets where appropriate so that the animals could be freely moving around.”

‘Magnetogenetics’ is therefore an important addition to neuroscientists’ tool box, which will undoubtedly be developed further, and provide researchers with new ways of studying brain development and function.

Reference

Wheeler, M. A., et al. (2016). Genetically targeted magnetic control of the nervous system. Nat. Neurosci., DOI : 10.1038/nn.4265 [Abstract]

Répondre à cet article

SPIP | squelette | Se connecter | Plan du site | Suivre la vie du site RSS 2.0